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Napier revisited or A new look at the computation of his logarithms 

Joachim Fischer and Bärbel Ruess 

 

Abstract. After more than 400 years it may seem improbable that something new can be said 

about the way John Napier (1550-1617) computed his logarithms for the Mirifici logarithmorum 

canonis descriptio of 1614. On the other hand, time has passed over these logarithms and made 

them as well as the ways of their computation obsolete almost immediately after their publication. 

Moreover, we had to wait 270 years until a translation of the Latin original of the (posthumous)  

Mirifici logarithmorum canonis constructio of 1619 into English was achieved, and this has 

remained the only one. This shows clearly that the interest in Napier's work is confined to the 

realm of history – but even there we find nothing but the facts that are well known for almost two 

centuries. We propose to follow the path opened by one of us and to have a new and fresh look at 

the rules and methods, which had to be formulated from scratch by John Napier, as well as their 

possible applications. 

 

Nach 400 Jahren erscheint es unwahrscheinlich, daß über Napiers Logarithmen und ihre 

Berechnung noch etwas Neues gesagt werden könnte. Andererseits ist die Zeit rasch über Napiers 

Logarithmen hinweggeschritten und machte sie und ihre Berechnung nahezu sofort nach 

Erscheinen obsolet. Man mußte allein schon 270 Jahre warten, bevor die Constructio aus dem 

Lateinischen in Englische übersetzt wurde, und das ist bisher die einzige Übersetzung geblieben. 

Das zeigt deutlich, daß das Interesse an Napiers Arbeit sich allenfalls auf die Historiker beschränkt 

– aber auch hier finden wir nichts als die Wiederholung der Fakten, die schon seit fast zwei 

Jahrhunderten bekannt sind. Wir schlagen statt dessen vor, den Kurs einzuschlagen, der von einem 

von uns vor einiger Zeit eröffnet wurde, und werfen daher einen neuen und frischen Blick auf die 

Regeln und Methoden, die Napier aus dem Nichts entwickelte, und auf ihre mögliche Anwendung. 
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0. Introduction and Basics 

2014 is the quartercentenary of John Napier's (1550-1617) publication of his table of 

logarithms, together with instructions to use, published in 1614: Mirifici Logarithmorum 

Canonis Descriptio (Descriptio for short). Five years later, i.e. two years after Napier's death, 

the construction manual for his logarithms appeared posthumously in 1619: Mirifici 

Logarithmorum Canonis Constructio (Constructio for short). Both works were written in 

Latin; but whereas an English version of the table and its instruction manual was given as 

early as 1616 and 1618 by Edward Wright (although for reasons currently unknown to us 

Wright decided to give the logarithms with one figure less, 6 instead of 7 places), and 

Ursinus's table of 1624 with 8 places and refined step size between the entries were soon to 

follow, we had to wait 270 years for a translation of the Constructio. The explanation of this 

neglect – and thus also for a sign of disinterest – is simple: as we all know, Napier himself 

contributed right after the publication to a new definition of logarithms, which led to the 

Briggsian or decimal or common logarithms, and these new logarithms almost instantly and 

completely superseded the original work. Simultaneously, other and new methods were 

conceived for the computation of these logarithms, and the need to see how Napier achieved 
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his computations strongly diminished. Since then, it has been the object of some research by 

mathematicians and astronomers with historical ambitions, like Delambre or Biot, and some 

of Napier's (minor) errors were pointed out or elucidated. However, there is still the need to 

have a closer look. We mention here explicitly Napier's miscalculation of the crucial value of 

10000000 · 0.99999
50

; he gives 9995001.222927, but this has been corrected to 

9995001.224804 already around 1835 by Biot, and at least definitely 1865 by Edward Sang. 

(The error may look insignificant, but of course, it isn't.) From there it went into Macdonald's 

translation of the Constructio in 1889 and has been repeated ever since. Curiously enough, 

this corrected value is wrong, too, but this has gone unnoticed for at least more than a century 

until 1997 (Fischer 1997; Fischer 1998), when the "real true" value of 9995001.224826 was 

published. (This does not, admittedly, influence the previous error very much, but that is not 

the point here...) This value for the first time respected Napier's rules of computing with finite 

precision, which he expressly laid down in the Constructio, and this and other observations 

gave us the impression that a fresh and closer look to that highly praised but at the same time 

almost totally neglected publication might be in order; and of course we had recourse to the 

Latin original… 

 

* 

 

We will outline now some basics concerning Napier's logarithms. This will be done using 

modern notions and notations, while at the same time trying to respect what Napier actually 

says, does or means. The § numbers given are those of the Constructio of the first 1619 

edition, Edinburgh (Napier 1619, Napier 1620). Of course we will have to skip many details.– 

Napier first considers the continuous motions of two points A and G. Point A is moving with 

constant velocity along a straight line, starting at B (arithmetical motion, § 23). Point G, 

starting at T, is moving along another straight line towards a fixed point S with a velocity 

always proportional to its current distance from S; consequently G is permanently slowing 

down (geometrically decreasing motion; §§ 24-25). If A and G start their respective motions 

at the same time t = 0, and if the initial velocities of A and G are the same, then at time t  0 

the length BA = : y(t) is called the logarithm of the remaining length GS = : x(t) (§ 26). Let 

the distance between T and S be called h; then we have y(0) = 0 and x(0) = h. Napier thus 

(verbally) defines a functional relationship for his logarithm, which we will call LN: 

LN(x(t)) : = y(t). However, t can be eliminated; and using the synchronising conditions given 

by Napier (same starting time, same initial velocities) we do eventually obtain a function 

LN(x). With hindsight, all this translates into 

 (1) LN(x) = h · (ln(h) – ln(x)) = h · ln(h/x), 

where ln has our usual meaning. As it should be (remember x(0) = h and y(0) = 0), we have 

 (2) LN(h) = 0 

(§ 27); and as it takes x an infinite time to become 0 (i.e. x() = 0 and y() = ), we also 

have 

 (3) LN(0) = . 
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If h were 1, then from (1) we would have LN(x) = ln(1/x) = –ln(x), and Napier's LN would 

immediately be recognisable as the logarithm to base e
–1

. Napier however chose h = 10
7
, as he 

wanted a table of LN for the sines of the angles  in the first quadrant,  = 0°0' (1') 90°0', and 

sines were tabulated in Napier's times as natural numbers, e.g. resulting from a radius of h = 

10
7
 = 10000000 (this special h was first chosen by Regiomontanus in the 15

th
 century; 

remember that the use of a decimal point was yet to be introduced – by Napier). In what 

follows, sines of this kind will be designated SIN; up to rounding we have 

SIN() = h · sin(). Thus Napier's aim was to compute a table of the 5401 values 

LN(SIN()), from LN(SIN(0°0')) =  in -steps of 1' to LN(SIN(90°0')) = 0. Actually the 

computation was done just the other way round, from the finite value 

LN(SIN(90°0')) = LN(h) = 0 down to LN(SIN(0°1')), i.e. to the last value before 

LN(SIN(0°0')) = LN(0) = .  

In the posthumously published 1619 Constructio, LN is considered only in the interval [0,h], 

although in the 1614 Descriptio (Napier 1614, Napier 1620), published first but written later, 

Napier pointed out that for x > h his LN still has a meaning but will then become negative (we 

will not deal with this, however, as it doesn't concern the computation of Napier's LN table). 

In the interval [0,h] Napier's LN is monotonically decreasing from LN(0) =  to LN(h) = 0. 

From LN's definition in modern terms (1) we deduce at once 

 (4) LN(a · b) = LN(a) + LN(b) – h · ln(h) = LN(a) + LN(b) – LN(1), 

and because LN(1) = 161180956.5  0, there is no functional equation like log(a · b) = 

log(a) + log(b). But such a thing, of course, was not what Napier was looking for. Instead, he 

deduced (among several other properties of LN) 

 (5) LN(a) – LN(b) = LN(u) – LN(v),  if  a : b = u : v 

(§§ 35-38), implicitly requiring 0 < a < b  h, 0 < u < v  h in order to avoid negative 

numbers and to stay in the original range (0,h], 0 excepted in this case. This was even better 

suited than a functional equation for Napier and his contemporaries, because they were 

accustomed to calculating in proportions. (5) will subsequently be used; but it is easy to 

obtain something very similar to our functional equation: Consider (h · a) : (h · b) = (h · 

a/b) : h, which by (5) and (2) results in 

 (5a) LN(h · a/b) = LN(h · a) – LN(h · b); 

or consider (h · ab) : (h · b) = (h · a) : h, which again by (5) and (2) leads to   

 (5b) LN(h · ab) = LN(h · a) + LN(h · b). 

Obviously this now requires 0 < a < b  1, but as (5a) and (5b) nearly reproduce the "classical" 

(but later) logarithmic functional equation, this suggests or supports the view of h as a mere 

scaling factor – which indeed it is; see SIN() = h · sin() or LN(h · sin()) = h · ln(1/sin()). 

 

1. Napier's problems… 

We (probably) know everything about ln and thus about LN; especially we know how to 

compute their values. Napier however invented LN and at first only knew that LN(h) = 0 (and 

LN(0) = ). In order to obtain numerical values for arguments 0 < x < h, Napier had to think 

about several problems: 
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a) Given the situation that it takes G an infinite time to reach S (as shown by LN(0) = ), 

he has to find feasible approximations when x is nearing 0; in particular he cannot 

include or must avoid x = 0 in his computations. 

b) Consequently, although the final interval of computation will be [0,h], Napier will 

have to choose a smaller interval [g,h], 0 < g < h, as a starting interval (remember that 

the only finite value he knows for LN is LN(h) = 0, so h has to be included). 

c) Consequently, again, Napier will have to find means to determine a suitable g and 

equally suitable procedures that will enable him to move the left end of the current 

interval of computation nearer to 0, possibly step by step. 

d) He will also have to define the accuracy with which his logarithms will be computed, 

at least in the starting interval. 

e) Moreover, finally, as he has nothing at his disposal to compare his LN with, he has to 

undertake what we today would call a forward analysis of the propagation of errors in 

order to check if his desired level of accuracy is attained. 

One of us has devoted two earlier papers (Fischer 1997, Fischer 1998) to sketching a 

reconstruction – based, of course, on Napier's Constructio – of how Napier might have solved 

some of these problems. From his writings it is obvious that he had a clear notion of d) and its 

consequences and requirements, and that for e) he did (or even invented) interval arithmetic 

and eventually embedded a geometrically decreasing sequence into his continuous starting 

interval which guaranteed d), but without any hints or details why this is so. Due to the 

strictly Euclidean style of Napier's publications, many of his important thoughts are easy to 

overlook or were even suppressed by him. The papers just mentioned were therefore meant, 

among other things, to show (for the first time, as far as we know) that Napier for his 

purposes indeed created interval arithmetic (because he had to, in order to do the forward 

analysis needed and respecting the finiteness of his numbers); to explain why Napier chose 

0.9995 as the ratio of two consecutive terms of the embedded geometric sequence; and at the 

same time to show that and why this choice was perfectly appropriate to guarantee the desired 

level of accuracy. So we will refrain from repeating this here; and we will also refrain from 

describing Napier's absolutely intriguing interpolation procedure by which he obtains 

logarithms for numbers not found in the sequence, and why this procedure will also work 

within the predefined accuracy in the starting interval (Napier's interpolation scheme in fact 

corresponds to what we today would call linear Taylor approximation, but in the special case 

of LN it was introduced into mathematics by Napier three generations before Taylor and was 

proved, of course, verbally/kinematically/geometrically). 

Speaking of geometrically decreasing sequences, we observe the following facts: Napier's 

sequences – for in fact there are a few of them – all start at h and have quotients obeying 

0 < p, q, …. < 1. The members of any pair of consecutive terms thus have the same ratio: 

(h · q
n
) : (h · q

n–1
) = (h · q

n–1
) : (h · q

n–2
) = …. = (h · q

1
) : (h · q

0
) = q. From (5) we have 

(6a) LN(h · q
n
) – LN(h · q

n–1
) = … = LN(h · q

2
) – LN(h · q) = LN(h · q) – LN(h) 

(§ 36), which, by using (2) and going backward through these equations, leads to 

 (6b) LN(h · q
n
) = n · LN(h · q). 

This has an analogue also for geometrically decreasing double sequences. Again by (5), and 

starting with (h · q
n
p

m
) : (h · q

n
) = (h · p

m
) : h, we first have 
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 (6c) LN(h · q
n
p

m
) – LN(h · q

n
) = LN(h · p

m
) 

(we also could have used (5b) directly); then, by applying (6b), we obtain (with Napier) 

 (6d) LN(h · q
n
p

m
) = n · LN(h · q) + m · LN(h · p). 

This will also be used later; but now let us first have a look at the two solutions presented by 

Napier for problems a) to c). 

 

2. …and two of his solutions 

Method I. Consider two numbers related to each other by a : b = 1 : 2 = h
2
1 : h, in particular 

h
4
1   a < h

2
1 and thus h

2
1   b < h. Applying (5) and (2) results in 

 (7a) LN(a) – LN(b) = LN(a) – LN(2a) = LN( h
2
1 ) – LN(h) = LN( h

2
1 ), or 

(7b) LN(a) = LN(2a) + LN( h
2
1 ) 

(§ 51). Thus, if LN( h
2
1 ) and LN(2a) = LN(b) were known, then Napier would also know 

LN(a), in particular for h
4
1   a < h

2
1 . The special case a = h

4
1 leads to  

 (7c) LN( h
4
1 ) = LN( h

2
1 ) + LN( h

2
1 ) = 2 · LN( h

2
1 ). 

Consider now two numbers related to each other by a : b = 1 : 4 = h
4
1 : h, in particular with 

h
8
1   a < h

4
1  and thus again h

2
1   b < h; then the same reasoning as above, but additionally 

using (7c), results in 

 (8a) LN(a) – LN(b) = LN(a) – LN(4a) = LN( h
4
1 ) – LN(h) = LN( h

4
1 ), or 

(8b) LN(a) = LN(4a) + LN( h
4
1 ) = LN(4a) + 2 · LN( h

2
1 ). 

If LN( h
2
1 ) and LN(4a) = LN(b) were known, then Napier would now also know LN(a), in 

particular for h
8
1   a < h

4
1 . The special case a = h

8
1  leads to  

 (8c) LN( h
8
1 ) = LN( h

2
1 ) + 2 · LN( h

2
1 ) = 3 · LN( h

2
1 ). 

Continuing this way, we obtain in general 

 (9) LN(a) = LN(2
k
a) + k · LN( h

2
1 ), 

in particular applied to an a with h/2
k+1 

 a < h/2
k
, thus lifting 2

k
a = b into h

2
1   b < h. This 

suggests the following solution of problems 1.a) to 1.c): 

a) Define [ 1
2

h h, ] as the starting interval. 

b) Compute the logarithms of all the numbers you need (using the interpolation 

procedure mentioned above), if these numbers are falling into the starting interval. 

This in particular includes LN( h
2
1 ). 

c) For numbers 0 < a < h
2
1  there is usually only one multiplier 2

k
 which lifts 2

k
a = b into 

the starting interval [ 1
2

h h, ]; then apply (9) to obtain LN(a).  

To be precise, c) is not exactly what Napier does: As a tribute to the decimal system, he 

instead uses the 28 multipliers m = 2, 4, 8, 10, 20, 40, 80, 100, … 8000000, 10000000 (§ 53) 

and computes the constants cm to be added to LN(m · a) when using m as multiplier 

(§§ 52-53), just like in (9). It is easy to see that this can be done in a similar way by also using 

LN( h
10
1 ). As h

10
1  is not in the starting interval, however, Napier has to do one (easy) extra 

computation. The cm of course are linear combinations of LN( h
2
1 ) and LN( h

10
1 ) with natural 
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coefficients. This obviously does not differ much from c), although in many cases there are 

now two choices for the multiplier. 

If executed systematically, this procedure allows to extend the interval of computation to the 

left, step by step, starting with [ ,h
2
1 h], then (k = 1) joining the interval [

2
1

4
1 ,h h), then (k = 2) 

the interval [
4
1

8
1 ,h h), and so on. If, however, executed with the knowledge of all the 

multipliers beforehand, Napier can at once complete his table: he just has to take the correct 

multiplier and then to proceed as usual. There is no restriction on the values of a except 

0 < a < h
2
1 . Specifically, this procedure does not require that a = SIN() for some  

appearing as an argument in the SIN table; instead it will work for any 0 < a < h
2
1  and thus is 

more general than perhaps needed for the construction of a LN(SIN(..)) table. 

Method II. It is obvious from his writings that Napier started with Method I. However, it also 

seems that at some time – probably near the end of his computations – he was in doubt 

whether this procedure would always lead to reliable results. Maybe originally he had in mind 

a general procedure for logarithms LN(x), regardless of whether x is the SIN of some angle  

or not. But for his alternative method he now made use of a special property of sines/SINes (§ 

55), which in modern notation is given by 

 (10a) )
2

90sin()
2

sin(2)sin(





 . 

Due to the scaling factor h = 10
7
 connecting sines and SINes, and also due to writing 

equations in the form of proportions, Napier formulated and geometrically proved this 

property as 

 (10b) 
2

)90(SIN 
: )

2
(SIN


= )
2

90(SIN


 : SIN(). 

This immediately translates, once again by (5), into Napier's logarithms LN: 

 (11a) ))(SIN(LN))
2

90(SIN(LN))
2

(SIN(LN)
2

)90(SIN
(LN 








;  

by using SIN(90°) = h and SIN(90°)/2 = h
2
1 , this results in 

 (11b) ))
2

(SIN(LN


= LN(SIN()) – ))
2

90(SIN(LN


 + LN( h
2
1 ) 

(§ 57). The special case  = 90° (§ 56) leads to 

 (11c) LN(SIN(45°)) = LN(h) – LN(SIN(45°)) + LN( h
2
1 ), or 

(11d) LN( h
2
1 ) = 2 · LN(SIN(45°)). 

Thus, by (11d), if LN(SIN(45°)) is known, then also LN( h
2
1 ) is known, as it is the same. And 

in general, if the logarithms LN(SIN(45°)) ... LN(SIN(90°)) are known, Napier is then able to 

compute, by (11b), LN(SIN(/2)) for all these , 45°    90°, because he also has 

45°  90°–/2 < 90°. So in the first step of Method II he could have obtained his LNs for 

SINes down to LN(SIN(22°30')). Continuing this way, he would extend this down to 

LN(SIN(11°15')), then down to LN(SIN(5°38')) and so on (§ 58). (This is mirrored by what 

was called above a "systematic execution" of Method I.) At the same time the starting interval 

is substantially reduced from [
2
1 h,h] to [

2

2 h,h]. 

Extending (11b) by iterating k times and setting /2
k
 = , we obtain (Napier doesn't do this) 
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 (11e) LN(SIN()) = LN(SIN(2
k
)) – 





1k

0i

LN (SIN(90°–2
i
)) + k · LN( h

2
1 ). 

E.g., for  = 5° and k = 3 (which suffices to reach the original starting interval; k = 4 would 

get us into the reduced starting interval) we will only have to do the following easy 

calculation: LN(SIN(5°)) = LN(SIN(40°)) – LN(SIN(85°)) – LN(SIN(80°)) – LN(SIN(70°)) + 

3 · LN( h
2
1 ), in numbers: LN(SIN(5°)) = 4419408 – 38126 – 153088 – 622025 + 3 · 6931469 

= 24400576, where all the LNs needed are taken from Napier's table. There, however, we find 

LN(SIN(5°)) = 24400578, but this would have been the result if we would have taken LN 

values with one additional figure after the decimal point (and these numbers were available to 

Napier and were used by him, but of course remained unpublished). 

Method II vs. Method I. While Method I seems more general (and under usual 

circumstances indeed is – but Napier's circumstances obviously were not usual), Method II 

has three distinctive features worth mentioning:  

a) As already pointed out, the starting interval is considerably smaller; in terms of SIN 

values it is [7071068,10000000] instead of [5000000,10000000]. An embedded 

geometrically decreasing sequence with ratio 0.9995, starting at the right end h = 10
7
, 

has reached the left end 7071068 of the starting interval after only 693 steps, 

compared to 1386 steps which are necessary to reach 5000000.  

b) By concentrating on LN(SIN(..)), the structure of the SIN table used is implicitly 

transferred to logarithms, especially the given subdivision of its arguments into 

degrees and minutes. This is exactly what Napier was aiming for, but brings a certain 

loss of generality with it. (To see this, simply suppose LN(x) should be needed when x 

is not exactly a SIN value, then one would have to do several rather tedious 

interpolations.) 

c) But the most striking and intriguing feature of Method II is clearly shown by (11b): In 

order to compute LN(SIN(/2)), the value of SIN(/2) doesn't even have to be known! 

Napier's preference. Napier suspected (§ 60) that the SIN tables at his disposal were not free 

from errors (and of course he was right). Because Method II theoretically enabled him not to 

use any of the SIN values below 45° (but he never mentions this in the Constructio; in the 

Descriptio we find it hidden in Book I, Chapter V, at the end of Problem 3: absque sinibus, 

but one has to know what one should be looking for), he had a clear preference for Method II, 

although he obviously started the whole thing – and therefore most of his calculations – with 

Method I in mind. It seems that only after having observed some discrepancies that Napier 

thought about another solution. 

His preference for Method II becomes clear when we consider his proposal – made at the very 

end of the Constructio, in § 60 – for the construction of a more precise table of LN, taking 

h = 10
8
 instead of h = 10

7
. Here we read that the ratio of the embedded geometrically 

decreasing sequence should be taken as 0.9999 (which, by the way, is in perfect accordance 

with the reconstruction mentioned above, explains this choice, and therefore also guarantees 

Napier the accuracy requested), that the starting interval should be taken as 

[70710678,100000000] and that accordingly Method II should be used to extend the table. 

 

3. More problems…for us 
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As we have only a few hints – probably written at different times, too – as to how Napier's 

calculations were carried out, let's now look at what else we have: Napier's 1614 table for LN, 

as published in the Descriptio. As usual with mathematical tables, we find errors of several 

kinds. 

We already mentioned above that Napier first decided in favour of an embedded 

geometrically decreasing sequence with q = 0.9995, which would have brought him in 1386 

steps from h to h
2
1 . But in order to facilitate his calculations he observed that 0.9995

20
  

0.99 = : p and replaced the original sequence by a double sequence xn,m : = h · q
n
p

m
 

(0  n  20, 0  m  68). This sequence has 1449 members, but due to q
20

  p we have 

x20,m  x0,m+1, so 1380 of its members will replace the 1386 terms of the original sequence 

determined by q alone. Napier found (see (6d)) that 

 (12) LN(xn,m) = n · LN(h · q) + m · LN(h · p) = n · LN(9995000) + m · LN(9900000) 

(§§ 46-47). First of all, due to a long identified but still unexplained computational error, 

Napier computed the crucial value at x1,0 = 9995000 as LN(9995000) = 5001.2485387 

(boldface: wrong figures), whereas – in accordance with his own computational rules – he 

should have obtained 5001.2504386 (the true value being 5001.2504168|224...). Regrettably, 

this error also affects the computation of LN(x) at x0,1, i.e. of LN(9900000). This means that 

in the end Napier has 

  LN(xn,m) = n · 5001.2485387 + m · 100503.3210291 

(boldface: wrong figures), but if the error had not been committed, he would have obtained 

  LN(xn,m) = n · 5001.2504386 + m · 100503.3590591, 

which is very near to our modern values:  

  LN(xn,m) = n · 5001.2504168 + m · 100503.3585350. 

Therefore, in general his LN will be systematically smaller than expected. The error in 

LN(9995000) accumulates (multiplication by 1380, the number of steps to get from h to h
2
1  

by using the double sequence) to an absolute error of –2.8  –3 at x = 5000000 = h
2
1 ; 

consequently, in Napier's table we find e.g. LN( h
2
1 ) = LN(SIN(30°)) = LN(5000000) = 

6931469 instead of 6931472. But we know from (9) and (11b) or (11e) that LN( h
2
1 ) appears 

in both Methods I and II of extending a starting interval to the final interval of computation, 

so the error in LN( h
2
1 ) will propagate further throughout Napier's LN table, regardless of the 

method used. This means that Napier's LN values should be proportional to the modern ones 

with a scaling factor of, say, 5001.2485387/5001.2504168 = 0.999999624… This, however, 

is not yet quite true: due to Napier's use of the double sequence, there is no such single 

"unifying scale factor" – the factor depends in its ninth decimal figure very slightly on x, 

because in the end the error in LN(9900000) will prevail. For practical purposes and 

comparisons a value of 0.999999627  100503.3210291/100503.3585350 will be better. 

Second, Napier compared Methods I and II in § 60, but the only example he gives 

(undoubtedly he had quite a few others) is for x = 378064. Now this is SIN(2°10') as one can 

find it in most of the contemporary SIN tables, but Napier doesn't even tell us that. He simply 

states – in the very last paragraph of the Constructio – that the LN value obtained by 

Method I, which he explicitly had computed earlier as LN(378064) = 32752756 (in the 

example of § 54), differs from the one obtained by Method II, given by him as 32752741, by 
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intolerable 15 units. However, everything concerning the value 32752741 is left to the reader; 

Napier neither bothers to explain why this value – and not the earlier 32752756 – should be 

the correct one (which indeed it nearly is), nor does he give any further details concerning its 

computation. So it is left to the reader whether he finds out that 378064 belongs to 2°10', and 

that LN(SIN(34°40')), which Napier had explicitly computed earlier (in the example of § 57), 

leads to LN(SIN(2°10')) by 4 times consecutively halving the angle; compare (11e). But only 

this observation makes the different results comparable!  

It was made explicit in the papers mentioned above (Fischer 1997 and Fischer 1998) why 

such differences are inevitable, and that they must appear when rounded SIN values have to 

be used in Method I. For even if all SIN values were correctly rounded, their rounding error of 

at most 0.5 is also multiplied by 2
k
 (or the corresponding factor m in Napier's table of 

multipliers, which in the example given by him obviously is 20), and thus in the general case 

does not lead to the correct multiple of 2
k
h · sin() which would be needed to obtain results 

within the accuracy required. 

Napier has chosen an absolutely perfect example to illustrate his case: First, the value 

x = 378064 indeed results from incorrect rounding in the SIN table(s) used; with two more 

figures we have h · sin(2°10') = 378064.55, so the SIN tables should have given 378065. 

Second, because of the multiplier m = 20 the error has grown from –0.55 to –0.55 · 20 = –11 

after lifting 378064 into the starting interval, obtaining b = 7561280. Third, b's error b = –11 

produces an LN error of  –h · b/b  +14.53  +15 units, exactly as found by Napier. 

Method II however, as pointed out above, would not even use the SIN values below 45°, and 

so definitely avoids this problem. But at which point during his calculations did Napier detect 

that Method I was not fully reliable? (No answer to this question will be given in what 

follows, or can probably ever be given.) Did he switch to Method II already from 45° 

downward, or only from 30° downward (because down to this angle he had already extended 

this original starting interval), or from another angle? Here we will later provide partial 

answers. 

However, third, at least in the starting interval Napier has to work with the values as they are 

given in the SIN table. Theoretically there were three good candidates with h = 10
7
 at Napier's 

disposal when he presumably began to work on his logarithms: Reinhold 1554, Finck 1583 

and Lansbergen 1591 (see e.g. Glowatzki and Göttsche 1990). With regard to h = 10
7
 it has 

become customary – and seems to be fair, too – to consider any SIN errors of absolute value 

> 2 as printing or printer's errors (although this may be debatable in a very few instances), 

whereas errors of 1 and even of 2 should be considered either rounding errors (if 1) or 

minor approximation errors (if 2), or both, but should be tolerated or interpreted as still 

being exact. This is in accordance with the fact that contemporary ideal tables should of 

course have given only correctly computed and correctly rounded (natural) numbers as their 

result, but also with taking into account that in the 16
th

 and 17
th

 centuries this was formulated 

as meaning something like "the (absolute) error should be smaller than (or at most) one unit of 

the last figure given in the table", so an error of 1 (instead of 0.5) was acceptable and not 

considered an error at all. As Glowatzki & Göttsche have shown in 1990, all of the three 

candidates mentioned above are based on Regiomontanus's SIN table, posthumously 

published in 1541 by Schöner; however, the number of what are considered printing errors in 

the sense described above has been considerably reduced from 93 (Regiomontanus 1541) to 

15 (Reinhold 1554) or 18 (Finck 1583 and Lansbergen 1591, the latter two being identical 
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according to Glowatzki & Göttsche, after all they tested). 11 among the 15 or respectively 18 

printing errors left uncorrected are identical; consequently there are 4 such errors appearing 

only in Reinhold's table, but not in Finck's or Lansbergen's table, and 7 appearing only in 

Finck's or Lansbergen's table, but not in Reinhold's. (The comparisons made by Glowatzki & 

Göttsche, however, do neither detect newly introduced printing errors, nor do they detect 

other differences in the SIN values, as this was not in their line of investigation. Naturally 

enough there are new printing errors… but this would be another story.) 

And this, fourth, raises the next question: Which one of these three tables was actually used 

by Napier for his computations (and how did he deal with the errors in these tables)? Unlike 

Finck and Lansbergen, Reinhold gave differences for his SINes, so in case an error was 

suspected it was a little bit easier to detect and to correct. But according to the findings of 

Glowatzki & Göttsche, Napier's 1614 table – in which not only LN(SIN()), but also SIN() 

is given – shows in its SIN part exactly the same 18 printing errors as Finck and Lansbergen, 

from which observation Glowatzki & Göttsche concluded that Napier must have used either 

Finck's or Lansbergen's SIN table, and this view has been accepted since (e.g. Lüneburg 2008, 

Roegel 2010). But can we really be sure about that? Of course the answer is "no" (see VIII.). 

 

4. What would we expect? What can we expect? 

Napier is clear about the rules that have to be obeyed during computation. He tells us 

precisely how many figures are to be used, whether the result of a multiplication or a division 

has to be rounded or truncated, and in the latter case where, when and how truncation is done. 

Thus there should be a good chance to be able to (almost exactly) reproduce Napier's table of 

LN(SIN()), simply by following his recipes. Alas, it is not as simple as that, even if one 

accepts deviations of 1 or at most 2. One thing, however, should be made clear: one must 

not re-do Napier's calculations by today's standards and compare the two; especially not when 

higher precision is used and when at the same time Napier's rules are disregarded. However, 

exactly this seems to be tempting… from the last third of the 19
th

 century (Sang, Macdonald: 

see Napier 1889/1966, passim) to our days (Roegel 2010). 

There is a simple reason why this does not make sense. As already pointed out, Napier made 

an impeccable forward analysis of the propagation of errors, using interval arithmetic. Now 

on the one hand forward analysis tends to overestimate the errors, but on the other hand 

Napier's initial value for LN(9999999), which he took to be 1.00000005, has not only 

precision 1/h as required by his forward analysis, but only 2/h² (as an easy analysis shows; see 

Macdonald in Napier 1889/1966). It takes about 6.9 million ( 0.7 h) steps with factor 

0.9999999 to get from h to h
2
1 ; Napier wanted LN( h

2
1 ) to have an error of at most 1, but in 

reality – given the precision (unknown to him, of course) of 2/h² in LN(9999999) – he 

attained a much, much better precision of 0.7 · 2/h  1.5/h (not regarding some other 

technicalities here). This is also what we see when computing a scaling factor between 

Napierian logarithms and h · ln(h/x) similar to the one given above, but this time not for 

Napier's logarithms with the error introduced by him, but with the values he should have 

obtained without. This factor turns out to be 1.0000000052 = : s, and will produce an error of 

+1 (because in this case Napier's logarithms would have been bigger than the true LN would 

be) only at LN(x) = 192218768, because approximately (at first not taking into account the 

effects of rounding) we must have s · LN(x) = LN(x) + 1 or LN(x) = 
1

1
s

. But the largest value 
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in Napier's LN table is 81425681 = LN(SIN(0°1')), and thus is less than half this critical 

value. This shows that all of Napier's LNs would have had an error of less than 0.5 even if 

they are "near to infinity" (i.e. near to LN(SIN(0°0')) = ) – if only Napier wouldn't have 

committed his central error. 

By the way, we can use the same reasoning to see when Napier's error-loaded logarithms will 

theoretically first produce a deviation of –1 (because now they are smaller than the correct 

LN): The factor s = 0.999999627 will do this when s · LN(x) = LN(x) – 1, or LN(x) = 
s1

1 , 

which results in LN(x) = 2662931. But this already is the case for x  SIN(50°0'), and due to 

rounding this will happen several degrees upward, i.e. when s · LN(x)  LN(x) – 0.5, or 

LN(x)  1/2(1 – s), or LN(x)  1331466, or x  SIN(61°5'). Indeed we observe that from 

60°51' downward we have a deviation of –1 (after rounding), and this grows in size until it 

has reached –30 at the angle nearest 0 (where LN is nearest to infinity), which of course again 

is 0°1'.– This leads us to a closer inspection of the numeric behind Napier's computation. 

 

I. 

How does the SIN table influence Napier's LNs? First of all, let us consider only the original 

starting interval [
2
1 h,h] and let us postpone the question whether Napier used Reinhold's, 

Finck's or Lansbergen's tables. For the time being we will assume, contrary to Glowatzki & 

Göttsche 1990, that he used Reinhold's, because on the one hand we have some evidence that 

Napier initially did use it (see below VIII.), and on the other hand for the simple reason that 

Reinhold's table has already been digitised, whereas Finck's and Lansbergen's haven't been 

yet. As mentioned above, in Reinhold's table 15 printing errors (i.e. deviations of absolute 

value > 2 in his SIN values compared to the correctly rounded ones) have been identified by 

Glowatzki & Göttsche as having remained of the 93 errors of Regiomontanus's 1541 table. 

Reinhold and/or his printer also introduced 15 further values with deviations of size > 2. We 

decided to assume that Napier would have identified any such errors and consequently we 

eliminated these errors by the following procedure: If a single figure of rank > 0 can be 

identified as causing the (main) error, it is replaced by the correct one. If necessary, this has to 

be iterated. If there remains the correct value or an error of absolute value  2, nothing further 

is done. In just two cases deviations of +3 and +4 remained (i.e. the last figure, rank 0, was 

slightly, but > 2, wrong); in these two cases Regiomontanus's value was taken instead. After 

these corrections, we have the following result: Out of 5401 SIN values, 3560 have no error 

when compared to correctly rounded modern values; 1825 have errors of 1 (1211 have +1, 

614 have –1) and 16 have errors of 2 (14 have +2, 2 have –2). There is a slight but clear bias 

for positive errors. The same count for the angles between 30° and 90°, corresponding to the 

starting interval [
2
1 h,h], has the following result: Out of 3601 SIN values, 2364 are free from 

errors, 1226 have errors of 1 (815 have +1, 411 have –1), and 11 have errors of 2 (10 have 

+2, 1 has –2); i.e. the relations seem to be stable, but again show the mentioned bias. 

Using (ideally) LN'(x) = –h/x we can find that 

 (13) LN(x+x)  LN(x) – x · h/x = LN(x) – h · x/x, 

as LN"(x) = h/x² etc. can obviously be neglected for 
2
1 h  x  h. In passing we observe that in 

this interval we have 1  h/x  2; –h/x is the factor by which x is enlarged. If x = SIN() has 

been correctly rounded, then 0  |x|  0.5 and consequently 0  |x · h/x|  1. In most 
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instances, the upper limit 1 is rather sceptical and will not be attained, but nonetheless tells us 

that even in these cases the SIN values available to Napier, though rounded, will generate 

only tolerable errors in LN (but it is equally obvious that a correctly rounded SIN value does 

not necessarily or even automatically produce a correctly rounded LN value). If, however, 

SIN() deviates from its correctly rounded value by 1 or even by 2 (which is the case – 

these two errors combined – for more than one third of the SIN values in the starting interval), 

the situation changes. For an error of 1 after rounding means that the true error is at least 

0.5 and at most 1.5, and consequently the error introduced into LN before rounding is at 

least also 0.5, but can attain values, in particular for x near to h
2
1 , up to 3. It is obvious that 

each of the (few) errors of 2 makes the situation even worse, introducing at least an error of 

1.5, but up to 5 for x near to h
2
1 . And because two thirds of the deviations in Reinhold's 

SIN have a positive sign, we expect that two thirds or more of the deviations in LN (compared 

to modern values) should have a negative sign, the more so as Napier's error in LN(9995000) 

also leads to his LN being systematically smaller than the true LN. 

After excluding two obvious (printer's?) errors in LN(SIN(45°11')) = 3433839 (Napier's table 

has 3433829) and in LN(SIN(45°12')) = 3430949 (Napier's table gives 3430940), and a rather 

curious sequence of four consecutive errors of the same magnitude, but with different sign 

(LN(SIN(33°31')) through LN(SIN(33°34') should have been 5938819, 5934428, 5930040 

and 5925655, but in the table we read 5938829, 5934438, 5930050 and 5925665), there are 

no deviations less than –6 or greater than 3 from the correct modern LN values in Napier's 

table (as far as the starting interval is concerned, of course) and we have 368 deviations > 0, 

2201 deviations < 0, and 1032 correct values, which means that a little bit less than 29% of 

the LN values in the starting interval as given by Napier are correct, about 61% have negative 

deviations, and a little bit more than 10% positive ones. If we compare this to the percentage 

of SIN values with corresponding deviations, we there find almost 66% correct values, almost 

23% positive deviations (bound to generate negative deviations in LN) and a little bit more 

than 11% negative deviations. In other terms: we find a substantial change in percentage 

which may be explained by the tendency (caused by Napier's error at x = 9995000) to 

underestimate LN's true value. 11% negative deviations in SIN have led to 10% positive 

deviations in LN, which still seems OK, but 66% correctly rounded SIN values have been 

reduced to only 29% correctly given LNs, and at the same time the 23% positive deviations of 

SIN have almost tripled compared to 61% negative deviations in LN. This increase of about 

38% is of the same magnitude as the loss of 37% in correctly rounded values. 

This can be made even more clear by comparing Napier's LN with the h · ln(h/x) values 

scaled by the factor 0.999999627 (see above), mimicking Napier's errors at LN(9995000) and 

LN(9900000). By using these scaled values for comparison we account for the 

"underestimating tendency" introduced by Napier's errors in LN(9995000) and LN(9900000); 

what remains should then be (more or less) the errors introduced by Napier having to use 

rounded SIN values from whoever's table. For the starting interval, we now find 1521 

(previously 1032) of 3601 LN values to be correct (in this sense), 795 (previously 368) at 

least one unit too high, 1285 (previously 2201) at least one unit too low; in percentages we 

now have 22% of the LN values too big, a little bit more than 42% correct and the remaining 

(a little bit less than) 36% too small. The increase in the percentage of the respective 

deviations from the correct values, compared to the deviations in the underlying SIN table 

(11% too small SIN values vs. 22% too big (scaled) h · ln(h/x) values, i.e. an increase of 11%, 
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respectively 23% too big SIN values vs. 36% too small (scaled) h · ln(h/x) values, i.e. an 

increase of 13%) is distributed almost evenly (11% or 13%, respectively) among both positive 

and negative deviations – as one would expect by the randomness of the figures after the 

decimal point in the exact SIN values combined with the rounding rules; this is what we now 

can see. 

But this still isn't a fair comparison, because it doesn't take into account that Napier had no 

correctly computed SINes with unlimited precision at his disposal, but instead had to rely on 

somebody else's rounded SINes. If the comparison should be really fair, we would have to 

compare Napier's values with the true LNs, but calculated for the rounded SINes given in the 

table used, and after that scaled down, accounting for Napier's error in LN(9995000). If we do 

this, we find even more correctly computed LNs, namely 1669 (instead of 1521), 985 (instead 

of 1285) which are too small, and 947 (instead of 795) which are too big. Translated into 

percentages we now find more than 46% of Napier's values to be correct (within the set-up 

described), more than 27% too small and more than 26% too big. But this is exactly what we 

should expect: because comparison is now made between data which really can be compared, 

we find that the number of positive and of negative deviations – introduced by rounding – is 

nearly the same, and that the percentage of Napier's LNs which have no error is now with 

46% the highest we find in any of our comparisons. 

Termed and counted differently: in the starting interval of 3600 values we have 88.6% of 

Napier's LN values in perfect accordance (1669) or within 1 (791 having –1, 730 having +1) 

of the fair comparison; including a tolerance of 2 (158 having –2, 169 having +2) this even 

increases to 97.7%. 

 

II. 

A more than merely tentative answer can be given to the question "Did Napier use Method II 

from 45° or only from 30° downward, or only from an even smaller angle downward?" From 

(11b), we have 

 (14) ))
2

(SIN(LN


+ ))
2

90(SIN(LN


 – LN(SIN()) – LN( h
2
1 ) = 0. 

So it is easy to check – once Napier's 1614 LN table has been digitised – in which cases, i.e. 

for which values of , 0° <   45°, this equation holds. (Well, it should always hold if the 

correct values of SIN and LN were available with unlimited or at least with sufficient 

precision, but neither of these is the case with Napier.) But again a) we only have the printed 

values, and b) they are natural numbers, i.e. in the best case they have been correctly rounded 

(because we can fairly be sure that in this computation Napier would have used the LNs 

available to him with at least one place after the decimal point; see above the example of 

LN(SIN(5°))). Considering this, one is again led to the conclusion that errors of absolute 

value  2 are acceptable in any case, and be it only because each of the 4 terms in (14) would 

bring a maximal error of 0.5 with it, assuming that everything else has been correctly 

computed. This leads to the following summary result: 

Deviation 0 1 2 > 2  

0° <  < 30° 908 500 225 166 1799 
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30°   < 45° 238 402 155 105 900 

0° <  < 45° 1146 902 380 271 2699 

While the percentage of deviations > 2 does not show a significant difference and remains in 

the order of magnitude of 10%, we have more than 50% of the LNs below 30° exactly 

reproducing (14), but only about 26% of the LNs between 30° and 45°. Therefore, there is 

strong evidence that Napier used Method II at the earliest from 30° downward, although he 

could have been using it already from 45° downward.  

Another hint is given by Napier himself, although very indirectly: To illustrate Method II, he 

computes LN(SIN(34°40')) by using LN(SIN(69°20')) = LN(SIN(2 · 34°40') and 

LN(SIN(55°20')) = LN(SIN(90°–34°40')); his (correct) result is 5642242. But SIN(34°40') is 

also in the starting interval, so he (and we) can compute LN(SIN(34°40')) using the 

interpolation procedure already mentioned. Doing this, we find 5642241 (which is correct, 

too!), and this is the value we see in Napier's table, and not the 5642242 of Method II. So it is 

clear that in this special case of an angle in the interval 30°    45°, where ideally he had 

two choices, Napier stuck to his original interpolation procedure; and it is also obvious now 

why test (14) is violated in this special case with the result –1. 

 

III. 

What else can we find out about the values of Napier's LN in the interval 0° <  < 30°? A 

partial answer has been given above: it is most likely that many of these were computed 

according to Method II, because more than 50% exactly fulfil the identity (14), and more than 

90% do it within a tolerance of 2. But let us now have a closer look at identity (14) itself – 

or, to be precise, equation (11b), from which (14) was derived by simply putting all its terms 

on one side –, but this time combined with the properties of the LN table which have been 

lifted there from the SIN table, namely the subdivision of the angles in the first quadrant into 

degrees and minutes. If we replace /2 by , equation (11b) becomes 

 (15) LN(SIN()) = LN(SIN(2)) – LN(SIN(90°–)) + LN( h
2
1 ). 

This shows that when computing LN(SIN()) from LNs obtained earlier, those LNs belonging 

to SINes of angles with an odd number of minutes and of degrees less than 30° are never used 

again in further computations. This means that – theoretically – not only SINes of angles 

< 30° are not needed, but also that LNs of SINes for angles < 30° having an odd number of 

minutes don't play a role, once they have been computed – which also means that possible 

errors in their computation are not forwarded. 

 

IV. 

There is a most peculiar range of angles worth mentioning: the interval 0° <   10°. In this 

interval of 600 values, we find only 45 angles (or a mere 7.5%) violating the exact fulfilment 

of (14): 

0°40', 1°0', 1°30', 1°43', 1°47', 1°48', 1°54', 1°57', 1°58', 2°7', 2°58', 2°59', 3°10', 3°26', 

3°34', 3°35', 3°36', 3°37', 3°53', 3°54', 3°56', 4°0', 4°10', 4°14', 4°30', 4°40', 5°0', 5°10', 
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5°56', 5°57', 5°58', 6°30', 6°40', 7°20', 7°30', 7°40', 8°10', 8°19', 8°20', 8°29', 8°30', 9°20', 

9°30', 9°40' and 10°0'. 

This already is most astonishing, because it means that 92.5% of the LNs given in this range 

by Napier fulfil (14) even if they are tested only with the natural numbers given by Napier. 

As we have to consider that Napier most probably used one extra place (the one after the 

decimal point), so rounding effects would appear, then this is far more than could have been 

expected. 

The second peculiarity of this range is its contrast to what follows. Beginning with 10°1', we 

find 46 violations of (14) among the 60 values until 11°0', i.e. almost exactly the same 

number of violations in an interval comprising just 1/10
th

 the size of 0° <   10°! And it goes 

on like this; although there are still several exact fulfilments of (14) to come, this sudden and 

also most extreme change must come as a surprise. 

Moreover, finally, there is a third peculiarity of the interval 0° <   10°. If we have a closer 

look at the 45 violations of (14), we find that an astonishing number of 22, i.e. almost half of 

the 45 violations, occur at angles having a multiple of 10 in their minutes: 

0°40', 1°0', 1°30, 3°10', 4°0', 4°10', 4°30', 4°40', 5°0', 5°10', 6°30', 6°40', 7°20', 7°30', 

7°40', 8°10', 8°20',  8°30', 9°20', 9°30', 9°40' and 10°0'. 

This again is a significantly higher percentage than we would expect. And it seems worth 

mentioning that these 22 violations consistently are +1, whereas we also find other values for 

the remaining 23 angles. Therefore, this too looks as if there is a system behind these 

findings. Concerning another observation which will follow just below, we note that out of 

the 60 multiples of 10' in the interval 0° <   10°, 22 (or almost 37%) have violations +1, 

while 38 (or a little bit more than 63%) have no violation of (14). 

For the time being, we have some theories, but yet no convincing explanation for these 

peculiarities of the range 0° <   10°. But we want to stress that of the about 900 angles in 

the range 0° <   30° where (14) is exactly fulfilled, 555 alone can be found among the first 

10 degrees. Alternatively: of the about 1150 angles of the range 0° <   45° where (14) is 

exactly fulfilled, almost half of these come from the first 10 degrees. This seems to indicate 

that Method II was strictly applied only for the first 10°, and this is exactly where Method I 

by having to use large multipliers (e.g. multiplier 4 from 10° down to 7°11', then multiplier 8 

from 7°10' to 3°35', then multiplier 10 down to 2°52' etc.) is most error-prone. Termed 

differently, the percentage of angles exactly fulfilling (14) decreases sensibly, from 92.5% in 

the interval 0° <   10° via 50% in the interval 0° <   30° to 42.5% in the interval 

0° <   45°. 

The last of the three peculiarities just mentioned extends in some way to the range 

10° <   45°. As we observed, starting right at 10°1', the number of violations per degree or 

even per 10' interval rises sharply. On the other hand, we still have a large number of non-

violating multiples of 10', namely the following 119: 

10°10', 10°20', 10°40', 10°50', 11°10', 11°20', 11°30', 11°50', 12°10', 12°20', 12°30', 

13°10', 13°20', 13°30', 13°40', 13°50', 14°10', 14°30', 14°40', 14°50', 15°0', 15°10', 15°20', 

15°30', 15°40', 15°50', 16°20', 16°30', 17°0', 17°10', 17°20', 17°50', 18°0', 18°10', 18°40', 

19°0', 19°10', 19°20', 19°30', 19°40', 19°50', 20°0', 20°10', 20°20', 20°40', 20°50', 21°0', 

21°10', 21°30', 21°40', 21°50', 22°0', 22°10', 22°20', 22°30', 22°50', 23°0', 23°10', 23°20', 
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23°30', 23°40', 24°0', 24°10', 24°40', 24°50', 25°20', 25°40', 25°50', 26°0', 26°10', 26°20', 

26°30', 26°40', 26°50', 27°0', 27°10', 27°20', 27°40', 27°50', 28°0', 28°10', 28°20', 28°30', 

28°40', 28°50', 29°0', 29°10', 29°20', 29°40', 30°0', 30°10', 30°50', 31°0', 32°10', 32°30', 

32°40', 33°20', 33°40', 33°50', 34°20', 35°0', 35°30', 35°50', 38°20', 39°0', 39°30', 40°0', 

40°30', 40°50', 41°0', 41°10', 41°30', 41°40', 42°20', 42°30', 43°20', 43°50', 44°10' and 

44°20'. 

As we have 210 multiples of 10' in the interval 10° <   45°,  these 119 angles make for 

almost 57% of the non-violating multiples of 10', compared with a little bit more than 63% in 

the first 10° interval 0° <   10°.  

 

V. 

Investigating the range 0° <   10° also helps to detect at least one severe computing error 

and its consequences as well as its origin. Looking at  = 0°57' one finds LN(SIN(0°57')) = 

41006643, both in Napier 1614 and Napier 1620. This is about 11000 units too big, but using 

LN(SIN(90°–0°57')) = LN(SIN(89°3')) = 1375, LN(SIN(1°54')) = 34076549 and LN( h
2
1 ) = 

6931469, all taken from the 1614 table, we find that (14) becomes 

  LN(SIN()) + LN(SIN(90°–)) – LN(SIN(2)) – LN( h
2
1 ) =  

   41006643   +           1375          –   34076549  –  6931469 = 0, 

i.e. (14) is fulfilled – which of course it should not be, because 41006643 is severely wrong. 

But if we take a further look at LN(SIN()) : = LN(SIN(2)) = LN(SIN(1°54')) = 34076549, 

then here we find (14) violated: Taking LN(SIN(90°–1°54')) = LN(SIN(88°6')) = 5499, 

LN(SIN(3°48')) = 27139185 and again LN( h
2
1 ) = 6931469, all from the 1614 table, we get 

LN(SIN()) + LN(SIN(90°–)) – LN(SIN(2)) – LN( h
2
1 ) =  

  34076549  +          5499         –   27139185  –  6931469 = 10998. 

By observing that 10998 = 2 · 5499, we immediately see what happened: As Napier used 

  LN(SIN()) = LN(SIN(2)) – LN(SIN(90°–)) + LN( h
2
1 ), 

he should have subtracted LN(SIN(90°–)) = LN(SIN(88°6')) = 5499 on the right hand side, 

but erroneously added it instead, thus making LN(SIN(1°54')) 2 · 5499 = 10998 units too big. 

By using Method II, this error was transferred to  = /2, i.e. to LN(SIN(0°57')), but because 

in Method II the LN(SIN(..)) of an angle with an odd number of minutes is not used again, 

once it has been computed (see III.), this error doesn't propagate further. However, that's not 

all: 

Between 1614 and 1620, someone must have stumbled across this very erroneous value of 

LN(SIN(1°54')). The 1620 Lyon edition of the Descriptio was clearly set anew from a copy of 

the 1614 edition, thereby inevitably introducing some new errors. But at 1°54' we surprisingly 

find LN(SIN(1°54')) = 34065549, exactly 11000 units less than in the 1614 edition – which 

makes this value almost OK. Whoever made this correction, however, quite obviously did not 

make use of Method II, for in this case he would have obtained 34065551. And not using (or 

disrespecting) Method II, he also wasn't able to recognise that this correction of the value of 

LN(SIN(1°54')) might also affect LN(SIN(0°57')), as it is the case. So in Napier 1620 we find 

that LN(SIN(1°54')) has been corrected in an acceptable way, but LN(SIN(0°57')) has been 
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left uncorrected and thus in both editions is 41006643 (instead of 40995645 according to 

Method II when using the correct value LN(SIN(1°54')) = 34065551). 

 

VI. 

As pointed out above, there is some evidence that Napier used Method II exactly from 10° 

downward. This, together with the many angles having a multiple of 10' combined with a 

peculiar property, might lead us to suspect that Napier could have followed a system with 

three or four levels in the course of his computations. It may have been that he first computed 

LN(SIN(90°0')), LN(SIN(80°0')), LN(SIN(70°0'))…. LN(SIN(30°0')) with his interpolation 

procedure for the starting interval, and then LN(SIN(20°0')) and LN(SIN(10°0')) with 

Methods I or II. This would have given him a quick overview of the quantitative development 

of LN. All these SINes have been correctly rounded – with the exception of 50°0', which is 

one unit too big – and have the same values in Reinhold, Finck, Lansbergen and Napier. The 

values given for LN(SIN(90°0')), LN(SIN(80°0')), LN(SIN(70°0'))... LN(SIN(30°0')) have 

been computed without error, when compared with a re-computation using Napier's erroneous 

values for LN(9995000) and LN(9900000). So let's have a look at LN(SIN(20°0')) and 

LN(SIN(10°0')) and see whether Napier's values can be obtained by Method I or by Method 

II. 

We have SIN(20°0') = 3420201; the required multiplier in Method I is 2, so we next need 

LN(6840402), which – by the interpolation procedure for the starting interval – is 3797385; 

adding LN( h
2
1 ) = 6931469 we obtain 10728854, but in the table we find 10728852 – which, 

however, is the value we get by applying Method II. On the other hand we have SIN(10°0') = 

1736482; the required multiplier is 4 = 2², so we next need LN(6945928), which – again by 

the interpolation procedure for the starting interval – is 3644294; adding 2 · LN( h
2
1 ) = 

13862938 we obtain 17507232, but in the table we find 17507234. Method II in this case 

would result in 17507233, so in this case both methods do not exactly reproduce Napier's 

value, but his value is nearer to the one obtained by Method II. 

A next step would perhaps be to look at the values for angles being a multiple of 5°, or 

directly going to whole degrees; and the same procedure could have been pursued for the 

subdivision into minutes: first to compute the 10' multiples, then refining to steps of 1'. But 

this is mere speculation for the time being. 

One thing should be mentioned here, although this topic, too, has not yet been the object of 

detailed studies. Even if 92.5% of the angles in the first 10° (or 555 out of 600) have their LN 

values obeying (14), this does not imply that these LN values are correct (for LN(x) + c would 

also give correct results). But the use of Method II, confirmed by the many of Napier's values 

obeying (14), "draws" his LNs nearer to the true LN values, because (11b) or (14) now 

assume the character of a functional equation defining LN(SIN(..))! This is mirrored again by 

two comparisons: Considering the starting interval, we have a very good agreement of 

Napier's LN values with the true ones scaled down by 0.999999627, both based on the 

rounded SIN() values available to Napier. However, doing this for the interval 0° <   10°, 

this is no longer the case; we find big and bigger deviations. But we get deviations of only a 

few units when we compare Napier's values with the LN(h · sin()) values (of course also 

scaled down accordingly), when not SIN values, but true sin values (not available to Napier) 

are used. But these few units (in general less than 4) of deviation are most probably nothing 
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but the starting errors introduced by having to use previously computed LN(SIN()) and 

LN(SIN(90°–)) values… 

 

VII. 

Let's return a last time to the comparison between Methods I and II and the possible point of 

change. As long as Napier was using Method I in the first interval of extension, i.e. in [ h
4
1 ,

h
2
1 ), corresponding to k = 1 (see above), his multiplier was 2, and he must have used (7b), 

LN(x) = LN(2x) + LN( h
2
1 ), for his computations. We have SIN(14°29') = 2500984 > 

2500000 = h/4, so the first step of Method I would lead him from 30° down to 14°29'. We can 

estimate the error at that point: As SIN(2 · 14°29')  SIN(29°)  SIN(30°), we will have the 

error of SIN(30°) = h
2
1  (which is –3) doubled according to (7b); in numbers: –6. This is 

exactly what we find in Napier's LN(SIN(14°29')) = 13859004, compared to  

–h · ln(sin(14°29')) = 13859010. However, Napier obviously was not in a position to observe 

this; instead, initially he relied on his forward analysis only. So what might have made him 

think about errors again? 

As we said, Napier in general gives one example (but rarely more than one) for his 

propositions. This goes for the Constructio as well as for the Descriptio. Now in the latter we 

find one example, which en passant was already quoted above: Book I, Chapter V, Problem 

3, which illustrates how to solve proportions with the aid of LN: Let's have a : b = c : x, and x 

being sought. Once again (5) at once tells us how to do this: LN(a) – LN(b) = LN(c) – LN(x), 

and therefore simply LN(x) = LN(b) + LN(c) – LN(a); after looking up x from the LN table 

we're done. In Napier's illustrating example we have a = 7660445, b = 9848078, c = 5000000. 

As Napier says: Hoc vulgus acquirit ducendo secundum in tertium, & dividendo per primum 

(freely translated: Usually this is done by multiplying the second term with the third term and 

dividing the product by the first term). This of course would mean a lot of calculating, even if 

in this particular case the third term makes it somewhat easier; whereas using LNs it is 

replaced by three lookups, one addition, one subtraction and one final lookup. 

But "the proof is in the pudding": The numbers given in this example are a = SIN(50°), 

b = SIN(80°) and c = SIN(30°); looking up we find their LNs as LN(a) = 2665149, 

LN(b) = 153088 and LN(c) = 6931469, so LN(x) = 153088 + 6931469 – 2665149 = 4419408, 

and looking up again we find x = SIN(40°). Napier ends: Idem proveniret si (spretis sinibus) 

solum darentur tres sui arcus 50. gra. 80. gr. & 30. gr. Namque ex Logarithmis arcuum 

80. gr. & 30. gr. ablato Logarithmo 50. gr. remanebit Logarithmus 40. gr. Et ita ipse arcus 

40. gr. innotescet absque sinibus, eorumve multiplicatione aut divisione, prout initio polliciti 

sumus (So it results (not using sines) that given only the arcs of 50, 80 and 30 degrees, we 

obtain the logarithm for [the sine of] 40 degrees by subtracting the logarithm for [the sine of] 

50 degrees from the sum of the logarithms for [the sines of] 50 and 80 degrees, without using, 

multiplying or dividing their sines, as we above promised we could do). 

Three (or even four) facts seem remarkable in this example: First, this is an instance of (10b) 

and/or (11a), i.e. Method II. For indeed we have SIN(50°) : SIN(80°) = SIN(30°) : SIN(40°), 

according to Napier's identity (10b). Moreover, second, it is shown for a particular case where 

only angles appear which are an exact multiple of 10°. Third, we can see that Napier here in 

the Descriptio uses his identity (10b) to give a perhaps surprising example with "round" 

angles, while in the Constructio he proved this relation for the SINes of any angles. So it 
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might well be that he looked for such simple relations in order to check whether his LN table, 

perhaps already computed right to the end with Method I, leads to correct results, and that 

doing this for relations in triangles with at least one very small angle he observed that this was 

not the case (there are several such small-angled triangles in the Descriptio's examples). This, 

then, in turn might have given him the idea to use his observation the other way round, i.e. to 

derive a means for computing LNs for small angles. (The fourth remarkable fact is that Napier 

here explicitly tells us which angles are involved and that their SINes do not have to be used – 

such hints and remarks are usually suppressed or very well hidden…) 

 

VIII. 

For us it seems too early to give a definite and final answer to the question "Which SIN table 

did Napier use?" Maybe one really has to distinguish between use and print, at least in some 

parts of the table. We do accept the findings of Glowatzki & Göttsche, but not necessarily 

their conclusion that Napier must have used either Finck's or Lansbergen's table. To make our 

differing interpretation clear, here is an example: 

Napier has a simple (and correct) rule for computing LN(SIN()) if  is in the range from 

about 88°36' to 90°0'; this rule is simply LN(SIN()) = h – SIN(). Among the 85 angles in 

this range, we have 24 (corresponding to a remarkable 30%) where Reinhold's SIN values 

differ from Finck's/Lansbergen's/Napier's SIN values. But in all of these 85 cases, it is 

Reinhold's SIN value which has been used in computing LN(SIN()) = h – SIN(), although 

Finck's (or Lansbergen's) SIN value has been printed… This is very easy to check for 

everyone even without the aid of a computer by simply looking at the last figures of SIN() 

and LN(SIN()):  As LN(SIN()) = h – SIN() is equivalent to LN(SIN()) + SIN() = h = 

10000000, the last figures of LN(SIN()) and SIN() should add up to 0 (mod 10). But in as 

many as 24 cases they don't add up to 0 (mod 10). And because all of Reinhold's wrongly 

rounded SINes in this 85' interval are one unit too small, but 7 of the 24 "corrected" values of 

Finck and Lansbergen have the same error in the other direction, i.e. are one unit too big, we 

are even lead to 7 differences of +2 (and consequently 17 remaining differences of +1), when 

we compare the sum of the printed values of SIN() and LN(SIN()) with the ideal result 

10000000, as long as  is in the range from 88°36' to 90°0'. Using Reinhold's values, 

however, we always obtain 10000000; but Reinhold's values do not appear in print… 

 

* 

 

5. Conclusion 

We have led our investigations I. through VIII. to different levels of depth, according to the 

possibilities either in the material or in our own limitations. What can be said definitely, 

however, is that even after 400 years it is worthwhile and extremely rewarding to have a look 

at the Constructio, because it reveals, when read anew, many details that have been hidden by 

the Euclidean style of the original. A first approach was given already in Fischer 1997 and 

Fischer 1998; this article means to proceed in the same direction, i.e. concentrates on the 

numerical data in combination with the rules and formulas given by Napier. We presented this 

work for the first time in the Mini-Workshop History of Numerical and Graphical Tables in 
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Oberwolfach, February 27
th

 – March 5
th

, 2011. Unfortunately, personal developments and 

circumstances forced both of us to temporarily abandon the matter; nonetheless, we believe 

the full publication in the state we had to leave it was necessary, and we hope that some day 

either we or other researchers will find the time to resume this work. 

 

* 
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Napier's Descriptio, 1614 edition, first page of the LN table. Within the 7-figure precision, 

SIN(89°59') and SIN(90°0') are identical and = 10000000, so SIN(89°59') and LN(SIN(89°59')) add 

up to 10000001, whereas Reinhold's table has SIN(89°59') = 9999999, so with that value the correct 

result 10000000 would appear. Observe that also in several other cases SINes and their respective 

logarithms do not add up to 10000000, but to 10000001 or 10000002; in particular the 7 successive 

SINes from SIN(89°48') to SIN(89°54') given here differ from Reinhold's values by 2 units, and 

accordingly SIN and LN add up to 10000002 instead of 10000000 (see VIII.). 
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Napier's Descriptio, 1620 edition, second page of the LN table. Observe that SIN(89°22') and 

SIN(89°23') are identical (due to a printer's error; Napier 1614 is OK here); the latter should read 

9999421. Apart from this, SIN(89°2'), SIN(89°8'), SIN(89°9'), SIN(89°14'), SIN(89°21') and their 

respective logarithms do not add up to 10000000, but to 10000001 (see VIII.). Observe also 

LN(SIN(0°57')) = 41006643 (mentioned in V.), which should be 40995645. 

 


